On the Convergence and Character Spectra of Compact Spaces

نویسنده

  • WILLIAM A. R. WEISS
چکیده

An infinite set A in a space X converges to a point p (denoted by A −→ p) if for every neighbourhood U of p we have |A\U | < |A| . We call cS(p,X) = {|A| : A ⊂ X and A −→ p} the convergence spectrum of p in X and cS(X) = ∪{cS(x, X) : x ∈ X} the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = {χ(p, Y ) : p is non-isolated in Y ⊂ X} and χS(X) = ∪{χS(x,X) : x ∈ X} is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then {κ, cf(κ)} ⊂ cS(p,X). A selection of our results (X is always a compactum): (1) If χ(p,X) > λ = λ then λ ∈ χS(p,X); in particular, if X is countably tight and χ(p,X) > λ = λ then λ ∈ χS(p, X). (2) If χ(X) > 2 then ω1 ∈ χS(X) or {2ω, (2ω)+} ⊂ χS(X). (3) If χ(X) > ω then χS(X) ∩ [ω1, 2] 6= ∅. (4) If χ(X) > 2 then κ ∈ cS(X), in fact there is a converging discrete set of size κ in X. (5) If we add λ Cohen reals to a model of GCH then in the extension for every κ ≤ λ there is X with χS(X) = {ω, κ}. In particular, it is consistent to have X with χS(X) = {ω,אω}. (6) If all members of χS(X) are limit cardinals then |X| ≤ (sup{|S| : S ∈ [X]ω})ω. (7) It is consistent that 2 is as big as you wish and there are arbitrarily large X with χS(X) ∩ (ω, 2) = ∅. It remains an open question if, for all X, min cS(X) ≤ ω1 (or even min χS(X) ≤ ω1) is provable in ZFC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

متن کامل

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Stability of essential spectra of bounded linear operators

In this paper‎, ‎we show the stability of Gustafson‎, ‎Weidmann‎, ‎Kato‎, ‎Wolf‎, ‎Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations‎ ‎belonging to a broad classes of operators $U$ such $gamma(U^m)

متن کامل

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

On Character Space of the Algebra of BSE-functions

Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all  BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009